Total No. of Pages: 2

Seat	
No.	

B.E. (Civil) (Semester - VII) (New) Examination, April - 2016 DESIGN OF CONCRETE STRUCTURES - I

Sub. Code: 47901

Day and Date : Friday, 29-04-2016

Total Marks: 100

Time: 3.00 p.m. to 6.00p.m.

Instructions:

- 1) Answer any three questions from each Section.
- 2) Figures to the right indicate full marks.
- 3) Use of non programmable calculator is permitted.
- 4) Assume suitable data, if necessary and state this clearly.
- 5) Use of IS 456-2000 is permitted.

SECTION - I

- Q1) a) Showing neat diagrams, explain what is meant by under, over and balanced singly reinforced rectangular sections. [6]
 - A RC singly reinforced beam of rectangular section 230 mm × 450 mm overall in mild exposure condition is reinforced with 4 bars of 16 mm diameter. Determine ultimate moment of resistance of the section if M20 mix grade concrete and Fe-415 steel is used.
- Q2) Find ultimate moment of resistance of L-beam with following data.

$$bf = 1200 \text{ mm}, d = 600 \text{ mm}, D_f = 125 \text{ mm}, bw = 300 \text{ mm}, A_{st} = 4 \text{ Nos. of } 25 \text{ mm diameter}, f_{ck} = 20 \text{ N/mm}^2, f_v = 415 \text{ N/mm}^2.$$
 [16]

Q3) a) Find ultimate moment of resistance of a doubly reinforced section for following data. [12]

Section 230 × 500 mm overall, $A_{st} = 3$ Nos, of 20 mm diameter, $A_{SC} = 3$ Nos. of 20 mm diameter, $f_{ck} = 20$ N/mm², $f_y = 250$ N/mm², Cover 35 mm both sides.

b) Write a note on bond and development length.

[4]

Q4) Design a singly reinforced beam with shear reinforcement for following data. Simply supported span = 5.75 m, Total working load on entire span = 48 kN/m, Width of beam = 230 mm, Use steel of grade Fe-415 and concrete grade M20.

Draw the reinforcement details with curtailment in shear reinforcement. [17]

SECTION - II

Q5) Design a simply supported one way RC slab in moderate exposure condition for following data.
[16]

Width of support = 300mm,

Clear Span = 4.0 m,

Live load = 2.0 kN/m^2 , Floor finish = 1.0 kN/m^2 .

Use M20 mix grade concrete and Fe-415 steel.

Q6) Design a flight of dog legged RC staircase for following data. [17]

Floor to floor height = 3.0 m. Consider landing 1.2 m on both sides. Span of flight consists of both landings.

Use Live load = 3.0 kN/m^2 , Use suitable rise and tread as per residential requirements. Use M20 mix grade concrete and Fe-415 steel.

- Q7) a) Explain IS 456 clauses by showing plan and longitudinal section of RC column, towards longitudinal and transverse reinforcement. [6]
 - b) Design a short axially loaded RC column to carry ultimate axial load of 3000 kN. Use M20 mix grade concrete and Fe-415 steel. [10]
- Q8) Design an isolated square RC footing with uniform thickness for following data. [17]

Column size = 300×450 mm.

Working axial load on column = 2000kN.

Safe Bearing capacity of soil = 250 kN/m^2

Use M20 mix grade concrete and Fe - 415 steel.

